

>>> PRESS RELEASE

Small fish populations accumulate harmful mutations that shorten lifespan

A genetics study in wild turquoise killifish shows that small populations accumulate mutations that shorten lives, helping scientists better understand how lifespan can evolve among populations.

Population bottlenecks contribute to the accumulation of several harmful mutations that cause age-related illnesses in killifish – a finding that may help answer a key question about aging.

The study, published 1 September in eLife, reveals why killifish accumulate harmful mutations that cause age-related conditions such as cancer or neurodegenerative diseases that shorten lifespan. This may help scientists better understand how lifespan evolves among populations and may lead to new insights on human aging.

The very short lives of turquoise killifish – between three and nine months – make them an ideal model for studying aging. Killifish live in temporary ponds in Africa that dry up for part of the year, meaning they must hatch, mature and reproduce before this happens. Their eggs survive the dry periods in a hibernation-like state and hatch when rains fill the pond again, starting a new generation.

"Different wild turquoise killifish populations have varying lifespans, and we wanted to explore the reasons behind this," explains lead author David Willemsen, Postdoctoral Research Fellow at the Max Planck Institute for Biology of Ageing, Cologne, Germany.

For their study, Willemsen and senior author Dario Riccardo Valenzano carried out field work in savanna pools in Zimbabwe to catch and collect genome samples from the killifish for

sequencing and analysing in the lab. The team then compared the genomes of killifish living in the driest environments, which have the shortest lives, with the genomes of killifish from wetter environments, which live for months longer.

The short-lived killifish have very small, often isolated populations, leading to so-called population bottlenecks which, the team found, result in harmful mutations accumulating in their populations. By contrast, the longer-lived killifish have larger populations and new fish with new genetic material frequently join their populations. Over time, these larger populations make it more efficient for natural selection to remove harmful mutations.

"Limited population sizes caused by habitat fragmentation and repeated population bottlenecks increase the chance for harmful mutations to accumulate in the population," Willemsen says. "Our work may help answer a key question about aging by suggesting that population dynamics, rather than evolutionary selection for or against specific genes, contribute to this accumulation of harmful mutations that result in aging and shorter life."

The results support a model where, given the brief rainy seasons, killifish are under strong selective constraints to survive in the absence of water as dormant embryos and to rapidly reach sexual maturation and reproduce before the water completely evaporates. However, the team believes that killifish are not selected to be short-lived. Instead, harmful mutations that affect late-life survival and reproduction (together causing aging in the killifish) accumulate over generations without being constrained by selection.

"Harmful mutations passively accumulate in killifish populations, and this is even more prominent in smaller populations which happen to live in drier environments," says senior author Dario Riccardo Valenzano, Group Leader at the Max Planck Institute for Biology and Ageing, and Principle Investigator at CECAD, the Cluster of Excellence for Ageing Research at the University of Cologne, Germany. "Our findings highlight the role of demographic constraints in shaping lifespan within species and could potentially be expanded to provide new insights on aging within other animal and human populations."

Press photo:

We are happy to send this picture to you as a separate jpg. Please contact Dr. Gabriella Lundkvist.

A Turquoise killifish (Nothobranchius furzeri) collected in savanna pools in Zimbabwe. © Dario Valenzano

Original publication:

The paper 'Intra-species differences in population size shape life history and genome evolution' by Willemsen, cui, Reichard and Valenzano can be freely accessed online at https://doi.org/10.7554/eLife.55794. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

This study will be included in eLife's upcoming <u>Special Issue on aging, geroscience and</u> <u>longevity</u>.

Scientific contact:

David Willemsen

dwillemsen@age.mpg.de

Dario Valenzano

dvalenzano@age.mpg.de

+49 0221 37970490

Media contact Cambridge:

Emily Packer, Senior Press Officer eLife e.packer@elifesciences.org +44 01223 855373

Media contact Cologne:

Dr. Gabriella Lundkvist glundkvist@age.mpg.de +49 0221 37970302

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Evolutionary Biology and Genetics and Genomics, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Evolutionary Biology research published in eLife, visit <u>https://elifesciences.org/subjects/evolutionary-biology</u>.

And for the latest in Genetics and Genomics, see <u>https://elifesciences.org/subjects/genetics-genomics</u>.