Health in old age is a lifelong affair

Reduced food intake in old mice can no longer improve health

Reduced food intake helps both animals and humans to improve health in old age and can prolong life. But when do you have to change your diet to achieve this benefit in old age? Scientists from the Max Planck Institute for Biology of Ageing, the Excellence Cluster for Ageing Research at the University of Cologne, the Babraham Institute in Cambridge and UCL have now shown in a study published in the scientific journal "Nature Metabolism" that mice only become healthier if they start food reduction early and eat less before entering old age. The scientists conclude that healthy behaviour must be established earlier in life in order to improve health in old age and extend lifespan.

How can we stay fit and healthy in old age for as long as possible? Researchers into ageing have a simple answer: eat less and healthily. But when do you have to start and is it enough if you only manage to do this for a short time? To investigate this, researchers led by Linda Partridge, Director at the Max Planck Institute for Biology of Ageing, have put young and old mice on a diet - with varying degrees of success.

Reduced food intake in old age has no beneficial effect

Mice live longer and are healthier in old age if they are given 40 percent less to eat after reaching adulthood than animals who are allowed to eat as much as they want. The dieting mice are fed with food enriched with vitamins and minerals to prevent malnutrition. But if food intake is first reduced in mice first start eating less food when they are already seniors, the researchers observe little or no effect on the life expectancy of the mice. On the other hand, when mice are allowed to eat as much as they like after a period of reduced food intake, they have no long-term protection, so reduced food intake has to be sustained for mice to reap the benefits. Reduced food intake must therefore be implemented early and be sustained until the end of their lives to have positive effects on health in old age.
"One should establish healthy behaviors early in life. It may not be as good for your health to change your diet later in life. Health in old age is a lifelong affair", explains Linda Partridge from the Max Planck Institute for the Biology of Ageing and UCL.

Memory effect in fat tissue

But why do older mice no longer react to the change in diet? Oliver Hahn, first author of the study and doctoral student in the Partridge department, investigated gene activity in different organs. While the gene activity in the liver quickly adapted when mice are transferred to a restricted diet, the scientists observed a ‘memory effect’ in the fat tissue of older animals. Although the mice lose weight, the activity of the genes in the fat tissue is similar to that of the mice that continue to eat as much as they want. In addition, the fat composition in old mice does not change as much as in young mice. This memory effect mainly affect mitochondria, the cells’ power houses, which play an important role in the ageing process. Usually, reduced food intake leads to increased formation of mitochondria in fatty tissue. But the study showed that this is no longer the case when older mice are switched to a lower calorie diet. This inability to change at the genetic and metabolic levels may contribute to the shortened lifespan of these animals.

Michael Wakelam, co-corresponding author and Director of the Babraham Institute commented, “The experimental power of integrating data about lipid metabolism and metabolic pathways with tissue-specific understanding of gene expression in mice of different ages and diets has allowed us to demonstrate clearly the importance of a nutritional memory in contributing to healthy ageing.”

Original publication:

Oliver Hahn, Lisa F. Drews, An Nguyen, Takashi Tatsuta, Lisonia Gkioni, Oliver Hendrich, Qifeng Zhang, Thomas Langer, Scott Pletcher, Michael J. O. Wakelam, Andreas Beyer, Sebastian Grönke, Linda Partridge

A nutritional memory effect counteracts benefits of dietary restriction in old mice

Nature Metabolism, October 21st 2019

Contact:

Author: Sebastian Grönke
Max Planck Institute for Biology of Ageing, D-Cologne
Tel.: +49 (0)221 379 70 610
E-mail: sebastian.groenke@age.mpg.de
About the Max Planck Institute for Biology of Ageing
The Max Planck Institute for Biology of Ageing investigates the natural ageing process with the long-term goal to pave the way towards increasing health during ageing in humans. It is an institute within the Max Planck Society, which is one of Germany’s most successful research organisations. Since its foundation in 2008 the institute is an integral part of a life science cluster in Cologne that pursue ageing research.
www.age.mpg.de

About the Babraham Institute
The Babraham Institute undertakes world-class life sciences research to generate new knowledge of biological mechanisms underpinning ageing, development and the maintenance of health. Our research focuses on cellular signalling, gene regulation and the impact of epigenetic regulation at different stages of life. By determining how the body reacts to dietary and environmental stimuli and manages microbial and viral interactions, we aim to improve wellbeing and support healthier ageing. The Institute is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC), part of UK Research and Innovation, through an Institute Core Capability Grant and also receives funding from other UK research councils, charitable foundations, the EU and medical charities.
www.babraham.ac.uk

UCL – London’s Global University
UCL is a diverse community with the freedom to challenge and think differently. Our community of more than 41,500 students from 150 countries and over 12,500 staff pursues academic excellence, breaks boundaries and makes a positive impact on real world problems. We are consistently ranked among the top 10 universities in the world and are one of only a handful of institutions rated as having the strongest academic reputation and the broadest research impact. We have a progressive and integrated approach to our teaching and research – championing innovation, creativity and cross-disciplinary working. We teach our students how to think, not what to think, and see them as partners, collaborators and contributors. For almost 200 years, we are proud to have opened higher education to students from
a wide range of backgrounds and to change the way we create and share knowledge. We were the first in England to welcome women to university education and that courageous attitude and disruptive spirit is still alive today. We are UCL.